

AGENDA

- Welcome
- Current Energy State
 - Electric Sector
 - Natural Gas Sector
- Production Consumption Potential Recommendations
- Technologies with Highest Potential by County
- Selected Projects
 - Solar
 - Wind
 - Combined Heat & Power
 - Geothermal
 - District Energy

Energy Consumption by Sector and County

Electric Consumption per Housing Unit and per Capita

Electric Consumption per Housing Unit and per Capita

Natural Gas Consumption per Housing Unit and per Capita

Natural Gas Consumption per Housing Unit and per Capita

Generation – Consumption – Potential - Recommendations

Generation – Consumption – Potential - Recommendations

Highest Potential for Distributed Generation by County

Firm	Distributed Generation	Cayuga	Cortland	Madison	Onondaga	Oswego
CDH	Solar Thermal	•	•	•		•
AWS Truepower	Solar Electric (PV)	•	•	•	•	•
AWS Truepower	Wind		•	•		•
<u>CDH</u>	СНР				•	
EARTH SENSITIVE SOLUTIONS, LLC	Geothermal	•	•	•		•
O'BRIEN & GERE	District Energy Systems				•	

SELECTED PROJECTS

Solar (19 sites)

- Combined net annual energy production between 6,290 MWh and 9,430
 MWh.
- > Potentially offset 5,900 metric tons of CO₂ emissions per year.
- If 19th location included: net energy increase to between 7,670 MWh and 11,500 MWh and CO₂ emissions reductions would increase to 7,200 metric tons.

Alternate Solar (10 sites)

Net energy output would be between 62,430 MWh and 93,610 MWh annually; resulting in an offset of CO₂ emissions estimated at 48,995 metric tons.

Combined Solar (29 sites)

> 19 original sites plus 10 additional sites = between 70,100 MWh and 105,110 MWh in net energy; and a total offset of CO₂ emissions estimated at 56,195 metric tons.

Large and Small Solar Sites

Alternate Solar Sites

Site Rank	Site Name	Size	Score	System Size (kW)	Annual Energy Production (MWh) ¹	Offset CO ² Emissions ² (metric tons)	LCOE (¢/kWh)	Site ID
1	Honeywell – 9-11a (top)	Large	8	21,090	22,190- 33,280	13,930 – 20,900	8.6 – 14.3	51A
2	Syracuse Airport	Large	9	22,610	23,750- 35,620	14,910 – 22,360	8.5 – 14.2	8A
3	Honeywell – 9-11b (berms)	Large	8	4,910	5,170-7,750	3,250 – 4,870	9.3 – 15.5	52A
 4	Salina Landfill	Large	8	5,430	5,710-8,570	3,590 – 5,380	9.2 – 15.4	2A
5	Honeywell – 15a	Large	8	2,280	2,400-3,600	1,510 - 2,260	9.7 – 16.2	54A
6	Raymour & Flanigan Warehouse	Large	9	1,510	1,590-2,380	1,000 – 1,490	9.9 – 16.6	45A
7	SUNY Cortland	Large	9	430	470-700	300 – 440	10.4 – 17.3	46A
8	SUNY Morrisville	Large	9	320	360-530	230 – 330	10.3 – 17.2	48A
9	Onondaga County Community College	Large	8	400	420-630	260 – 400	10.7 – 17.8	49A
10	MWB Water Reservoir	Large	8	350	370-550	230 – 350	10.8 – 18.1	5A
V.								

Wind

- Large Wind
 - Madison, Cayuga and Onondaga are optimal counties for production
 - Expected 30.4 MW of installed capacity, yielding 118,264 MWh
 - 74,255 metric tons of CO₂ offset
- Small Wind (65 m scenario Sites: 1,3,4,8,7)
 - Oswego, Onondaga, Madison county locations
 - Expected production of 10,952 MWh
 - ▶ 5,692 metric tons of CO₂ offset

Large and Small Wind

Large Wind

Site	NCF%	Nameplate Capacity (MW)	100 m Wind Speed (m/s)	Gross Energy Production (MWh)	Loss Estimate (%)	Net Energy Production (MWh)	COE (@/kWh)	Offset CO ₂ Emissions (metric tons)	Site ID
Madison	44.6	9.60	7.52	46,605	19.5	37,517	8.4	23,556	2
Cayuga	45.0	9.60	7.60	46,906	19.3	37,853	8.5	23,767	3
Onondaga	43.7	11.20	7.41	46,906	19.3	42,894	8.6	26,932	6

Small Wind

Site	NCF%	65 m Wind Speed (m/s)	Gross Energy Production (MWh)	Loss Estimate (%)	Net Energy Production (MWh)	LCOE (团/kWh)	Offset CO ₂ Emissions (metric tons)	Site ID
Alcan Aluminum Corporation	33.8	6.69	2534	17.2	2098	10.8	1317.3	1
SUNY Oswego	31.2	6.43	2336	17.2	1934	11.5	1214.3	3
St. Luke's Residential Health	30.9	6.39	2313	17.2	1915	11.6	1202.4	4
Marquardt Switches Inc.	27.1	6.10	2020	17.2	1673	12.9	1050.4	8
Fabius Greenwood Farm, LLC	23.5	5.76	1749	17.2	1448	14.5	909.1	7

Combined Heat & Power

QUEENSBORO FARMS, CANASTOTA, NY

Current

- Dairy processing facility with significant thermal loads and significant amounts of compressed air use.
- Currently uses two rotary screw compressors totaling 160 HP to meet this load. The compressors are about 30% less efficient than modern air.

Proposed Project

- A natural gas-engine-driven air compressor would displace significant amounts of electrical use without requiring electrical interconnection to the utility grid.
- Would displace about 80 kW from the grid and save about \$16,000 per year with a simple payback just over 10 years
- > Approximately **60 metric tons** of annual CO₂ reduction

Geothermal

Potential Site	County	Description	City (C), Village (V) or Town (T)	Incremental Cost	First Year Energy Cost Savings	Simple Payback Period (years)
SUNY Cortland, Park Center	Cortland	Retrofit existing ice rink and pool facility with heat pump system that extracts heat from ice making operation and uses the recovered heat to maintain pool water temperature.	Cortland (C)	\$1,104,000	\$306,000	3.6
Onondaga Community College, Coulter Library	Onondaga	Replace existing dual duct system for 90,000 square foot library with geothermal heat pump HVAC installation.	Onondaga (T)	\$453,000	\$33,300	13.6
Empire Brewing Company, Empire Farmstead Brewery	Madison	A geothermal heat pump system would be a natural complement to the proposed 20,000 square foot brewing operation, where waste heat such as that present in the mash be extracted to heat the building in winter.	Cazenovia (V)	\$90,200	\$9,160	9.8
Syracuse Community Health Center (SCHC)	Onondaga	The SCHC is proposing to construct a new 60,000 square foot medical office building on South Salina Street in Syracuse.	Syracuse (C)	\$217,000	\$17,800	12.2

SUNY Cortlland

Empire Brewing Company

District Energy

Syracuse Inner Harbor Redevelopment

- Proposed develop the 28 acre Syracuse Inner Harbor site into a mixed use neighborhood of housing retail and office buildings.
- Plans call for construction of more than 500 housing units, a satellite college campus, 100 room hotel, office buildings and other amenities.
- Engage the developer as early as possible to explore the potential benefits that district energy could bring to the project. Potential technologies that could be considered include
 - Geoexchange heating and cooling using the harbor itself or the brine aquifer beneath the site,
 - Biomass heating and high efficiency central heating and cooling plants.

NYSERDA Residential Penetration

- Penetration rate for Energy STAR in 5 county region is 3.7% since 2001
- Annual penetration rate is below 0.5%
- If we increase adoption rate to 2.5% of stock (5x ~ 7,000 units)
 - 40 year implementation
 - Annual cost of \$56 million at \$8,000/unit
- Key influences:
 - Energy costs
 - Economy
 - Service provider availability
 - High upfront costs to implement
 - Lack of financial assistance
- Potential solutions
 - PACE loans
 - On bill financing

Energy Efficiency

Town of Preble Town Hall - Comprehensive Energy Retrofit

QUESTIONS?

THANK YOU

